Glutamate-Rich Protein Gene Sequences of a Rodent Malaria Parasite, Plasmodium berghei NK65, and Human Plasmodium falciparum Strains are Homologous

Main Article Content

Ishaya Yohanna Longdet
Richard Joseph Kutshik
Ngozi Yvonne Chibundu
Bitrus Yakubu
Dinci Tyem Davou

Abstract

Aim: To explore the molecular characteristics of glutamine rich protein (GLURP) gene in Plasmodium berghei NK65 and compare its genetic relatedness with those of Plasmodium falciparum. The GLURP is a key surface antigen and its gene a genetic marker for genotyping in malaria epidemiology.

Study Design: The design chose for this study was an experimental research.

Place and Duration: The study was undertaken in the Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos between October 2018 and June 2019.

Methods: Total Deoxyribonucleic acid was extracted from the whole blood of Plasmodium berghei NK65 infected mice using ZR Quick-gDNA™ Miniprep Kit (ZYMO RESEARCH). PCR was done using Gene Ampp9700. The amplicon was analyzed in 2% agarose gel, documented with ChemiGenuis® Gel Documentation System (Synegene) and sequenced at Inqaba Biotec Industries, South Africa. Finch TV® (GeoPiza) was used to access the GLURP nucleotide sequence and analysed using National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLASTn) and CLUSTAL O analyses tools.

Result: The polymerase chain reaction product, about 1kb, gave 863bp partial length GLURP gene of Plasmodium berghei NK65 strain. The bioinformatics analyses gave Blast Hits: Plasmodium falciparum GLURP gene (AF191065.1) with 98.23% identity; (AF247634.1) with 94.93% identity; and (XM_001347592.1) with 94.66% identity. This shows high similarity between Plasmodium berghei NK65 GLURP gene sequence and that of the human malaria parasite Plasmodium falciparum.

Conclusion: The presence of GLURP gene was reported for the first time in Plasmodium berghei NK65 which is homologous to strains of the deadliest human malaria parasite, Plasmodium falciparum.

Keywords:
Plasmodium berghei NK65, GLURP gene, malaria.

Article Details

How to Cite
Longdet, I. Y., Kutshik, R. J., Chibundu, N. Y., Yakubu, B., & Davou, D. T. (2020). Glutamate-Rich Protein Gene Sequences of a Rodent Malaria Parasite, Plasmodium berghei NK65, and Human Plasmodium falciparum Strains are Homologous. South Asian Journal of Parasitology, 4(4), 18-27. Retrieved from https://journalsajp.com/index.php/SAJP/article/view/30125
Section
Original Research Article

References

Druilhe P, Hagan P, Rook GA. The importance of models of infection in the study of disease resistance. Trends Microbiol. 2002;10:10:38-46.

Janse C. Plasmodium berghei: Model of malaria; 2019; Available:https://www.lumc.nl/org/ parasitologie/research/malaria/berghei-model/. Access: 18th March, 2019

Leclerc MC, Hugot JP, Durand P, Renaud F. Evolutionary relationships between 15 plasmodium species from new and old world primates (including humans): An 18S rDNA cladistic analysis. Parasitology. 2004;129: 677–684.

Déchamps S, Maynadier M, Wein S, Gannoun-Zaki L, Maréchal E, Vial HJ. Rodent and nonrodent malaria parasites differ in their phospholipid metabolic pathways. Journal of Lipid Research. 2010;51(1):81–96. DOI: 10.1194/jlr.M900166-JLR200

Goodman AL, Forbes EK, Williams AR, Douglas AD, de Cassan SC, Bauza K, Biswas S, et al. The utility of Plasmodium berghei as a rodent model for anti-merozoite malaria vaccine assessment. Scientific Reports. 2013;3:1706.

Imai K, Tarumoto N, Misawa K, Runtuwene LR, Sakai J, Hayashida K, Eshita Yet al. Anovel diagnostic method for malaria using loop-mediated isothermalamplification (LAMP) and MinION™ nanopore sequencer. BMC Infect Dis. 2017;17(1):621. DOI: 10.1186/s12879-017-2718-9

Nyachieo A, Overmeir C, Laurent T, Dujardin JC, D'Alessandro U. Plasmodium falciparum genotyping by microsatellites as a method to distinguish between recrudescent and new infections. Am J Trop Med Hyg. 2005;73:210–213.

Pattaradilokrat S, Trakoolsoontorn1 C, Simpalipan1 P, Warrit1 N, Kaewthamasorn N, Harnyuttanakorn P. Size and sequence polymorphisms in the glutamate-rich protein gene of the human malaria parasite Plasmodium falciparum in Thailand. Parasites and Vectors. 2018;11:49. DOI: 10.1186/s13071-018-2630-1

Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A, Muniandy PK. Genetic diversity of Plasmodium falciparum populations in malaria declining areas of Sabah, East Malaysia. PLoS One. 2016;11:e0152415.

Kumar D, Dhiman S, Rabha B, Goswami D, Deka M, Singh L. Genetic polymorphism and amino acid sequence variation in Plasmodium falciparum GLURP R2 repeat region in Assam, India, at an interval of five years. Malar J. 2014;13:450.

Lusingu JP, Vestergaard LS, Alifrangis M, Mmbando BP, Theisen M, Kitua AY. Cytophilic antibodies to Plasmodium falciparum glutamate rich protein are associated with malaria protection in an area of holoendemic transmission. Malar J. 2005;4:48.

Janse CJ, Walters AP. Plasmodium berghei: The application of cultivation and purification techniques to molecular studies of malaria parasites. Parasitology Today. 1995;11(4): 138-143.

Martinsen ES, Perkins SL,Schall JJ. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol. Phylogenet. Evol. 2002;47:261–273.

Kooij TW, Carlton JM, Bidwell SL, Hall N, Ramesar J, Janse CJ, Waters AP. A Plasmodium whole-genome synteny map: indels and synteny breakpoints as foci for species-specific genes. PLoS Pathog. 2005;1:e44.

Frech C, Chen N. Genome comparison of human and non-human malaria parasites reveals species subset-specific genes potentially linked to human disease. PLoS Comput Biol. 2011;7(12): e1002320. Doi:https://doi.org/10.1371/journal.pcbi.1002320

Kaba SA, Brando C, Guo Q, Mittelholzer C, Raman S, Tropel D. A non adjuvanted polypeptide nano particle vaccine confers long-lasting protection against rodent malaria. J Immunol. 2009;183:11:7268–7277.

Blagborough AM, Sinden RE. Plasmodium berghei HAP2 induces strong malaria transmission-blocking immunity in vivo and in vitro. Vaccine. 2009;27(38): 5187–5194.

Cao Y, Zhang D, Pan W. Construction of transgenic Plasmodium berghei as a model for evaluation of blood-stage vaccine candidate of Plasmodium falciparum chimeric protein 2.9. PLoS One. 2009;4:9.

Borre MB, Dziegiel M, Høgh B, Petersen E, Rieneck K, Riley E. Primary structure and localization of a conserved immunogenic Plasmodium falciparum glutamate rich protein (GLURP) expressed in both the preerythrocytic and erythrocytic stages of the vertebrate life cycle. Mol. Biochem. Parasitol. 1991;49:13:119– 1131.

Ranford-Cartwright LC, Taylor J, Umasunthar T, Taylor LH, Babiker HA, Lell B. Molecular analysis of recrudescent parasites in a Plasmodium falciparum drug efficacy trial in Gabon. Trans R Soc Trop Med Hyg. 1997;91:719–24.

Theisen M, Cox G, Høgh B, Jepsen S, Vuust J. Immunogenicity of the Plasmodium falciparum glutamate-rich protein expressed by vaccinia virus. Infect Immun. 1994;62:3270–5.

Adu B, Cherif MK, Bosomprah S, Diarra A, Arthur FK, Dickson EK. Antibody levels against GLURP R2, MSP1 block 2 hybrid and AS202.11 and the risk of malaria in children living in hyperendemic (Burkina Faso) and hypo-endemic (Ghana) areas. Malar J. 2016;15:123.

Patel P, Bharti PK, Bansal D, Raman RK, Mohapatra PK, Sehgal R. Genetic diversity and antibody responses against Plasmodium falciparum vaccine candidate genes from Chhattisgarh, Central India: Implication for vaccine development. PLoS One. 2017;12:e0182674.

Mendes AM, Reuling IJ, Andrade CM, Otto TD, Machado M, Teixeira F, et al. Pre-clinical evaluation of a P. berghei-based whole-sporozoite malaria vaccine candidate. npj Vaccines. 2018;3:54

Metoh TN, Chen J, Fon-Goh P, Zhou X, Moyou-Somo R, Zhou X. Genetic diversity of Plasmodium falciparum and genetic profile in children affected by uncomplicated malaria in Cameroon. Malar J. 2020;19:115. Doi: 10.1186/s12936-020-03161-4